隐函数求导x^(1/2)+y^(1/2)=9,求在点(1,64)切线的斜率,特别是隐函数求导,那个y^(1/2)是不是等于y'/[2(y^(1/2))],还没学啊.
问题描述:
隐函数求导x^(1/2)+y^(1/2)=9,求在点(1,64)切线的斜率,
特别是隐函数求导,那个y^(1/2)是不是等于y'/[2(y^(1/2))],还没学啊.
答
由隐函数求导公式:
dy/dx=-Fx/Fy=-(y/x)^0.5=-8
y-64=-8(x-1)
8x+y-72=0
答
√x + √y = 9
两边对x求导:1/(2√x) + y'/(2√y) = 0
y' = -√(y/x)
在(1,64)处,y' = -√(64/1) = -8
答
[x^(1/2)+y^(1/2)]'=0,1/[2(x^(1/2)]+y'/[2(y^(1/2))]=0,y'=-(y/x)^(1/2),y'(1)=-64^(1/2)=-8.
切线方程为:y-64=-8(x-1),8x+y-72=0.