(2√3)sinB+(2√3)sin(2π/3 -B)如何化为3cosB+(3√3)sinB

问题描述:

(2√3)sinB+(2√3)sin(2π/3 -B)如何化为3cosB+(3√3)sinB

(2√3)sinB+(2√3)sin(2π/3 -B)=(2√3)sinB+(2√3)(sin(2π/3)cosB-cos(2π/3)sinB)=(2√3)sinB+(2√3)((√3/2)cosB+(1/2)sinB)=3cosB+(3√3)sinB

因为 sin(2π/3 -B)=sin(π/3 +B)
故(2√3)sinB+(2√3)sin(2π/3 -B)=(2√3)sinB+(2√3)sin(B+π/3 )
=2√3sinB+√3sinB+3cosB
=3cosB+(3√3)sinB

(2√3)sinB+(2√3)sin(2π/3 -B)
=2√3(sinB+sin(2π/3 -B))
=2√3(sinB-sin(-π/3-B))
=2√3(sinB+sin(π/3+B))
=2√3(sinB+sinπ/3cosB+cosπ/3sinB)
=2√3(sinB+√3/2cosB+1/2sinB)
=2√3(3/2sinB+√3/2cosB)
=3cosB+(3√3)sinB