f(x)满足f(x+y)=f(x)+f(y)+2xy,(x,y属于R),f(1)=2,则f(-3)等于多少 .

问题描述:

f(x)满足f(x+y)=f(x)+f(y)+2xy,(x,y属于R),f(1)=2,则f(-3)等于多少 .

f(2)=f(1)+f(1)+2*1*1=6f(3)=f(1+2)=f(1)+f(2)+2*1*2=2+6+4=12f(1)=f(1+0)=f(1)+f(0)+2*0*1=2可知:f(0)=0f(-3+3)=f(0)=0又:f(-3+3)=f(-3)+f(3)+2*3*(-3)=12+f(-3)-18=0f(-3)=6