已知sinA+cosA=1/5,A∈(0,π),求sinA,cosA及sin^3A+cos^3A

问题描述:

已知sinA+cosA=1/5,A∈(0,π),求sinA,cosA及sin^3A+cos^3A

1)sinA+cosA=1/5.(1)
(sinA+cosA)^2=1/25
1+2sinAcosa=1/25
sinAcosA=-12/25.(2)
(sinA-cosA)^2=1-2sinAcosA=1-2*(-12/25)=49/25
A∈(0,π),
sinA-cosA=±7/5
由(2)式知
cosA0
sinA-coaA=7/5.(3)
(1)+(3)得
sinA=4/5
(1)-(2)得
cosA=-3/5
sin^3A+cos^3A
=(sinA+coaA)(sin^2A+coa^2A+sinAcosA)
=(4/5-3/5)(1-12/25)
=1/5*13/25
=13/125