已知AD与BC相交于点O,若角ABC与角ADc的角平分线相交于贞E,如图2,试探究角A,角C,角E之间的数量关系?
问题描述:
已知AD与BC相交于点O,若角ABC与角ADc的角平分线相交于贞E,如图2,试探究角A,角C,角E之间的数量关系?
答
如图,∠E=1/2(∠A+∠C),理由如下:
∵∠E=180°-(∠EBD+∠EDB)
=180°-(∠1+∠3+∠2+∠4)
又∵∠3+∠4=180°-∠BOD,
∴∠E=∠BOD-∠1-∠2
∵∠BOD=∠A+∠ABC=∠A+2∠1=∠C+2∠2,
∴2∠E=2∠BOD-2∠1-2∠2
=(∠A+2∠1)+(∠C+2∠2)-2∠1-2∠2
=∠A+∠C,
∴∠E=1/2(∠A+∠C)