在正项等比数列中,1/a2a4+2/a3a5+1/a4a6=25,则1/a3+1/a5=

问题描述:

在正项等比数列中,1/a2a4+2/a3a5+1/a4a6=25,则1/a3+1/a5=

1/a2a4+2/a3a5+1/a4a6=q^2/a3a5+2/a3a5+(1/q)^2/a3a5
=1/a3a5[q+1/q]^2
=(1/a4)^2[q+1/q]^2
所以1/a4(q+1/q)=±5,因为正项等比,故1/a4(q+1/q)=5
而1/a3+1/a5=q/a4+1/a4q=1/a4[q+1/q]
1/a3+1/a5=5