在正项等比数列{an}中,a5=1/2,a6+a7=3,则满足a1+a2+.+an>a1*a2.*an的最大正整数n的值为
问题描述:
在正项等比数列{an}中,a5=1/2,a6+a7=3,则满足a1+a2+.+an>a1*a2.*an的最大正整数n的值为
答
设公比为 q ,则 a6+a7=a5(q+q^2)=1/2*(q+q^2)=3 ,
解得 q=2 (舍去 -3),因此 an=a5*q^(n-5)=2^(n-6) ,
那么 a1+a2+.+an=1/32+1/16+.+2^(n-6)=2^(n-5)-1/32 ,
a1*a2*.*an=2^[-5-4-.+(n-6)]=2^[n(n-11)/2] ,
因此由已知得 2^(n-5)-1/32>2^[n(n-11)/2] ,
两边同乘以 2^5 得 2^n-1>2^[n(n-11)/2+5] ,
由此得 2^n-2^[n(n-11)/2+5]>1 ,
因此只须 n>n(n-11)/2+5 ,
解得 (13-√129)/2