求广义积分1/(1 +x^2)(1+x^α) 积分区间(0,+∞)
问题描述:
求广义积分1/(1 +x^2)(1+x^α) 积分区间(0,+∞)
α>=0
答
记积分值是A,对积分做变量替换x=1/t,
A=积分(从0到无穷)dx/(1+x^2)(1+x^a)
=积分(从无穷到0)(-dt/t^2)/【(1+1/t^2)(1+1/t^a)】
=积分(从0到无穷)t^adt/(1+t^2)(1+t^a)
=积分(从0到无穷)x^adt/(1+x^2)(1+x^a),既然两者相等,相加除以2得
A=0.5积分(从0到无穷)dx/(1+x^2)
=0.5arctanx|上下无穷下限0
=pi/4