如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆.ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.
问题描述:
如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.
(1)求证:∠OPB=∠AEC;
(2)若点C为半圆
的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由..ACB
答
(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2) 四边形AOEC是菱形.证法一:∵OP⊥弦BC于点D且交...
答案解析:(1)根据题意得PB⊥AB.则∠OPB+∠POB=90°.再由OP⊥BC,得∠ABC+∠POB=90°.即可得出∠ABC=∠OPB.又∠AEC=∠ABC,得∠OPB=∠AEC;
(2)四边形AOEC是菱形.有两种解法:根据题意得出
=.CE
.再由C为半圆.BE
的三等分点,得.ACB
=.AC
=.CE
.即∠ABC=∠ECB.从而得出AB∥CE,AC⊥BC.AC∥OE,四边形AOEC是平行四边形.又OA=OE,从而得出四边形AOEC是菱形..BE
考试点:切线的性质;菱形的判定.
知识点:本题考查了菱形的性质以及切线的判定,是中考压轴题,难度较大.