Sn=1*1/3+3*(1/3)^2+5*(1/3)^3+.+(2n-1)*(1/3)^n=
Sn=1*1/3+3*(1/3)^2+5*(1/3)^3+.+(2n-1)*(1/3)^n=
sn=1*1/3+3*(1/3)^2+5*(1/3)^3+......+(2n-1)*(1/3)^n
sn/3=1*1/3^2+3*(1/3)^3+5*(1/3)^4+......+(2n-1)*(1/3)^(n+1)
sn-sn/3=1/3+2/3^2+2/3^3+...........+2/3^n-(2n-1)*(1/3)^(n+1)
2sn/3=-1/3+2/3^1+2/3^2+2/3^3+...........+2/3^n-(2n-1)*(1/3)^(n+1)
2sn/3=-1/3+2/3*[1-(1/3)^n]/(1-1/3)-(2n-1)*(1/3)^(n+1)
2sn/3=-1/3+1-(1/3)^n-(2n-1)*(1/3)^(n+1)
2sn/3=2/3-(1/3)^n-(2n-1)/3^(n+1)
2sn/3=2/3-3*1/3^(n+1)-(2n-1)/3^(n+1)
2sn/3=2/3-(2n+2)/3^(n+1)
sn/3=1/3-(n+1)/3^(n+1)
sn=1-(n+1)/3^n
把Sn乘以1/3,然后用错位相减法就OK
两边同乘33Sn=1+3*(1/3)+5*(1/3)^2+...+(2n-1)*(1/3)^(n-1)Sn = 1*(1/3)+3*(1/3)^2+...+(2n-3)*(1/3)^(n-1)+(2n-1)*(1/3)^n两式相减2Sn=1+2*(1/3)+2*(1/3)^2+...+2*(1/3)^(n-1)-(2n-1)*(1/3)^n2Sn=1-(2n-1)*(1/3)^n+...