1.已知函数发f(x)=asinx+btanx+1满足f(5)=7,则f(-5)的值为( )2.f(cosx=cos3x,那么f(sin30度)的值为( )

问题描述:

1.已知函数发f(x)=asinx+btanx+1满足f(5)=7,则f(-5)的值为( )
2.f(cosx=cos3x,那么f(sin30度)的值为( )

∵函数f (x )=asinx+btanx+1
∴f(5)=asin5+btan5+1=7
∴asin5+btan5=7-1=6
∵f(-5)=-asin5-btan5+1
∴f(-5)=-(asin5+btan5)+1=-6+1=-5
2)因为sin30°=cos60°,
故f(sin30°)=f(cos60°)=cos(3*60°)=cos180°=-1

1.因为f(x)=asinx+btanx+1所以f(-x)=-asinx-btanx+1即f(x)+f(-x)=2
则f(-5)=2-f(5)=-5
2.f(sin30度)=f(cos60度)=cos180度=-1

1.f(x)=asinx+btanx+1
=> f(x) - 1 = asinx + btanx
令h(x)= f(x) - 1
h(-x) = a(sin(-x))+ b(tan(-x))
= -asinx - btanx
= - h(x)
=> h(-5)= f(-5) - 1 (1)
h(-5)= -h(5) = - (f(5)-1) = -(7 - 1)= -6 (2)
(1)(2) => f(-5) = -5
2.f(sin30度) = f(cos60度)= cos (3*60度)=cos 180度 = -1