已知b1/a1>d1/c1,b2/a2>d2/c2,求证(b1+b2)/(a1+a2)>(d1+d2)/(c1+c2)
问题描述:
已知b1/a1>d1/c1,b2/a2>d2/c2,求证(b1+b2)/(a1+a2)>(d1+d2)/(c1+c2)
答
设e1,e2,分别与c1,c2同号,且满足
b1/a1=(d1+e1)/c1,b2/a2=(d2+e2)/c2
则由等比关系可得
(b1+b2)/(a1+a2)=(d1+d2+e1+e2)/(c1+c2)
=(d1+d2)/(c1+c2)+(e1+e2)/(c1+c2)
>(d1+d2)/(c1+c2)