已知f[(x+1)/x]=(x^2+1)/(x^2)+1/x求f(x)换元法!

问题描述:

已知f[(x+1)/x]=(x^2+1)/(x^2)+1/x求f(x)换元法!

令t=(x+1)/x,则x=1/(t-1)
f(t)=1+(t-1)^2+(t-1)
=t^2-t+1
所以f(x)=x^2-x+1

令a=1/x
则(x+1)/x=1+1/x=1+a
(x²+1)/x²+1/x
=1+1/x²+1/x
=1+a²+a
所以f(1+a)=a²+a+1
令x=1+a
a=x-1
所以f(x)=(x-1)²+(x-1)+1
即f(x)=x²-x+1