过点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线为(  )A. 2x+y+2=0B. 3x-y+3=0C. x+y+1=0D. x-y+1=0

问题描述:

过点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线为(  )
A. 2x+y+2=0
B. 3x-y+3=0
C. x+y+1=0
D. x-y+1=0

y'=2x+1,设切点坐标为(x0,y0),
则切线的斜率为2x0+1,
且y0=x02+x0+1
于是切线方程为y-x02-x0-1=(2x0+1)(x-x0),
因为点(-1,0)在切线上,
可解得x0=0或-2,当x0=0时,y0=1;x0=-2时,y0=3,这时可以得到两条直线方程,验正D正确.
故选D
答案解析:这类题首先判断某点是否在曲线上,(1)若在,直接利用导数的几何意义,求函数在此点处的斜率,利用点斜式求出直线方程(2)若不在,应首先利用曲线与切线的关系求出切点坐标,进而求出切线方程.此题属于第二种.
考试点:导数的几何意义.
知识点:函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y-y0=f′(x0)(x-x0