已知圆C与两坐标轴都相切,圆心C到直线y=-x的距离等于√2.(1)求圆C的方程;(2)若直线l与x轴正半轴与y正半轴分别交于A(m,0),B(0,n)两点(m>2,n>2),且直线l与圆C相切,求三角形AOB面积的最小值.
问题描述:
已知圆C与两坐标轴都相切,圆心C到直线y=-x的距离等于√2.
(1)求圆C的方程;
(2)若直线l与x轴正半轴与y正半轴分别交于A(m,0),B(0,n)两点(m>2,n>2),且直线l与圆C相切,求三角形AOB面积的最小值.
答
圆心C到直线y=-x的距离等于√2.
那么圆心一定在y=x上,用几何法较简单 要不就点到直线距离公式可以算出圆心(1,1)半径r=1
由于m,n是完全对称的 根据最值理论 题目中告诉能取得最小值 那么必将是在两变量相等时取得最小值m=n则面积的最小值是3+2√2
答
画图易得:(x-1)^2+(y-1)^2=1面积最小值即:mn/2(min){那就尽量把它换成是一个字母的在找最值}要用到:点(圆心)到直线距离公式我们先设:直线l:x/m+y/n=1 =>化简 nx+my-mn=0r=|n+m-mn|/√(n^2+m^2)=1因为 题...