已知(x-y)/13=y/7,则(x+y)/y=已知x/6=y/4=z/3(x,y,z均不为零),则(x+3y)/(3y-2z)=

问题描述:

已知(x-y)/13=y/7,则(x+y)/y=
已知x/6=y/4=z/3(x,y,z均不为零),则(x+3y)/(3y-2z)=

(1)
(x-y)/13=y/7
7(x-y)=13y
7x-7y=13y
7x=20y
设x=20t 那么y=7t
(x+y)/y=(20t+7t)/7t=27/7
(2)
设x/6=y/4=z/3=t
x=6t y=4t z=3t
(x+3y)/(3y-2z)
=(6t+12t)/(12t-6t)
=18t/6t
=3

(第一)(x+y)/13=y/17展开:17x+17y=13y;移项:17x=-4y 〉〉
x=-(4/17)y;带入 后式中的:(x+y)/y= 13/17!
(第二)x/6=y/4可得x=6y/4;同理:z=3y/4!带入后计算式中:(6y/4+3y)/(3y-2*3y/4)=3

第一题:(x-y)/13=y/7 13y=7x-7y 20y=7x x/y=20/7 两边都加1
(x+y)/y=27/7
第二题:x/6=y/4=z/3(x,y,z,不为零) 用特值法 令x/6=y/4=z/3=1
x=6,y=4,z=3.则(x+3y)/(3y-2z)=
3

(x-y)/13+2y/13=y/7+2y/13
整理得 (x+y)/y=27/7