曲线积分与路径无关,单连通域.1.∫(xdy-ydx)/(x^2+y^2) 有平面线D:x^2+y^2>02.∫(xdx+ydy)/(x^2+y^2) 有平面线D:x^2+y^2>0这俩道题都有aq/ax=ap/ay,但是第一个与路径有关,而第二个与路径无关.因为D不是单连通域.请问:1.为什么不是单连通域,平面线D:x^2+y^2>0避开了(0,0)点啊2.就算不是单连通域,上面俩道题共用一个D域啊,为什么第一个有关,第二个无关.

问题描述:

曲线积分与路径无关,单连通域.
1.∫(xdy-ydx)/(x^2+y^2) 有平面线D:x^2+y^2>0
2.∫(xdx+ydy)/(x^2+y^2) 有平面线D:x^2+y^2>0
这俩道题都有aq/ax=ap/ay,但是第一个与路径有关,而第二个与路径无关.
因为D不是单连通域.
请问:
1.为什么不是单连通域,平面线D:x^2+y^2>0避开了(0,0)点啊
2.就算不是单连通域,上面俩道题共用一个D域啊,为什么第一个有关,第二个无关.

①确实D不是单连通域:正是因为避开了(0,0)点,所以D是由整个平面挖去了(0,0)点以后而构成的,这样的域不是单连通域.②在“与路径无关的条件”的定理当中,前提条件是“在单连通域上”,而现在D不是单连通域,所以,虽然有...