高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+z2)ds的值是多少,

问题描述:

高数题,曲线积分
若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+z2)ds的值是多少,

圆周:过球心的平面截得的是大圆,半径是a,周长是2πa,
∫L(x2+y2+z2)ds=∫L(a^2)ds=a^2∫Lds=2πa^3

因为曲线L位于圆周上,所以x2+y2+z2=a2
故∫L(x2+y2+z2)ds=a2∫Lds=a^2*2PI*a=2PI*a^3