给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的( )条件A. 充要B. 充分非必要C. 必要非充分D. 既非充分又非必要
问题描述:
给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的( )条件
A. 充要
B. 充分非必要
C. 必要非充分
D. 既非充分又非必要
答
直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直;
即“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”为假命题;
但直线l与平面α垂直时,l与平面α内的每一条直线都垂直,
即“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题;
故“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要非充分条件
故选C
答案解析:由垂直的定义,我们易得“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题,反之,“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”却不一定成立,根据充要条件的定义,即可得到结论.
考试点:空间中直线与平面之间的位置关系.
知识点:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.