已知抛物线的方程为y平方=4x,直线L过定点P(-2,1),斜率为K.K为何值时,直线L与抛物线y平方=4x只有一个
问题描述:
已知抛物线的方程为y平方=4x,直线L过定点P(-2,1),斜率为K.K为何值时,直线L与抛物线y平方=4x只有一个
答
-1或1\2
答
y^2=4x;根据题意,直线的方程为:y-1=k(x+2),代入抛物线方程得到:(kx+2k+1)^2=4xk^2x^2+2(2k+1)kx+(2k+1)^2=4xk^2x^2+(4k^2+2k-4)x+(2k+1)^2=0,根据题意,有一个交点,所以判别式=0,即:判别式=(4k^2+2k-4)^2-4k^2(2k+...