解方程(x平方+x-3)/(x平方+x-2)+1=(2x平方+4x+1)/(x平方+2x+1)

问题描述:

解方程(x平方+x-3)/(x平方+x-2)+1=(2x平方+4x+1)/(x平方+2x+1)

(x^2+x-3)/(x^2+x-2)=(2x^2+4x+1)/(x^2+2x+1)-1
(x^2+x-3)/(x^2+x-2)=(x^2+2x)/(x^2+2x+1)
1-1/(x^2+x-2)=1-1/(x^2+2x+1)
则 1/(x^2+x-2)=1/(x^2+2x+1)
则x^2+x-2=x^2+2x+1 且x^2+x-2与 x^2+2x+1不等于0即x不等于1,-2,-1
则x=-3