定义在R上的函数f(x)满足f(x)=log2(1-x)(x≤0)f(x-1)-f(x-2)(x>0),则f(2014)的值是(  )A. -1B. 1C. log23D. -log23

问题描述:

定义在R上的函数f(x)满足f(x)=

log2(1-x)(x≤0)
f(x-1)-f(x-2)(x>0)
,则f(2014)的值是(  )
A. -1
B. 1
C. log23
D. -log23

∵f(x)=

log2(1-x),x≤0
f(x-1)-f(x-2),x>0

∵f(2014)=f(2013)-f(2012)
=[f(2012)-f(2011)]-f(2012)=-f(2011),
即当x>6时满足f(x)=-f(x-3)=f(x-6),周期为6
∴f(2014)=f(335×6+4)=f(4)
=f(3)-f(2)=f(2)-f(1)-f(2)=-f(1)
=-f(0)+f(-1)
=-log21+log22=1.
故选:B.
答案解析:f(2014)=f(2013)-f(2012)=[f(2012)-f(2011)]-f(2012)=-f(2011),即当x>6时满足f(x)=-f(x-3)=f(x-6),周期为6,由此能求出结果.
考试点:对数的运算性质.
知识点:本题考查分段函数的函数值的求法,是基础题,解题时要认真审题,注意函数的周期性的灵活运用.