在一元二次方程ax2+bx+c=0(a≠0)中,N=b2-4ac,M=(2ax+b)2,则M和N的关系是(  ) A.N=M B.N>M C.N<M D.M和N的大小关系不能确定

问题描述:

在一元二次方程ax2+bx+c=0(a≠0)中,N=b2-4ac,M=(2ax+b)2,则M和N的关系是(  )
A. N=M
B. N>M
C. N<M
D. M和N的大小关系不能确定

∵ax2+bx+c=0,
∴ax2+bx=-c,
M=(2ax+b)2=4a2x2+4axb+b2=4a(ax2+bx)+b2=-4ac+b2=b2-4ac=N,
∴M与N的大小关系为M=N.
故选A.