等比数列{An}的首项为A1,公比为q,且极限n趋向于无穷[A1/(1+q)-q^n]=1/2,求首项A1的取值范围
问题描述:
等比数列{An}的首项为A1,公比为q,且极限n趋向于无穷[A1/(1+q)-q^n]=1/2,求首项A1的取值范围
等比数列{An}的首项为A1,公比为q,且极限n趋向于无穷[A1/(1+q)-q^n]=1/2,求首项A1的取值范围
答
首先,确定q的范围为(0,1],否则q^n趋于无穷.
这样可以知道A1=1/2(1+q),得到A1为(1/2,1]