如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; (2)若CD=2,求AD的长.
问题描述:
如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=
,求AD的长.
2
答
(1)证明:∵AD⊥BC,∠BAD=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵BE⊥AC,AD⊥BC
∴∠CAD+∠ACD=90°,
∠CBE+∠ACD=90°,
∴∠CAD=∠CBE,
在△ADC和△BDF中,
,
∠CAD=∠CBE AD=BD ∠ADC=∠BDF=90°
∴△ADC≌△BDF(ASA),
∴BF=AC,
∵AB=BC,BE⊥AC,
∴AC=2AE,
∴BF=2AE;
(2) ∵△ADC≌△BDF,
∴DF=CD=
,
2
在Rt△CDF中,CF=
=
DF2+CD2
=2,
(
)2+(
2
)2
2
∵BE⊥AC,AE=EC,
∴AF=CF=2,
∴AD=AF+DF=2+
.
2