已知椭圆x^2/4+y^2/3=1,若椭圆上总存在两点关于直线x+y+b=0对称,求b的取值范围

问题描述:

已知椭圆x^2/4+y^2/3=1,若椭圆上总存在两点关于直线x+y+b=0对称,求b的取值范围

设椭圆上两点A(x1,y1)、B(x2,y2) 关于直线y=-x+-b对称,AB中点为M(x0,y0).则 3x1^2+4y1^2=12 3x2^2+4y2^2=12 相减得到:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0由于M是AB的中点,所以x1+x2=2x0,y1+y2=2y0既6x0(x1-x2)+8y0(...