如图,AB垂直BD于点B,CD垂直于点D.若AB=ED,BE=DC,则三角形AEC是等腰三角形.请说明理由

问题描述:

如图,AB垂直BD于点B,CD垂直于点D.若AB=ED,BE=DC,则三角形AEC是等腰三角形.请说明理由

∵AB⊥BD CD⊥BD
∴∠ ABE=∠ CDE
又∵AB=ED BE=DC
∴△ABE≌△EDC(边角边)
∴AE=EC ∠ AEB=∠ ECD
∵∠ ECD+∠ CED=90°
等量代换:∴∠ AEB+∠ CED=90
∴∠ AEC=180-∠ AEB-∠ CED
=90°
∵AE=EC且∠ AEC=90°
∴△AEC是等腰直角三角形