前n个连续正整数的和s=1+2+3…+(n-1)+n=

问题描述:

前n个连续正整数的和s=1+2+3…+(n-1)+n=

这是一个等差数列,有专门的前n项和求和公式,Sn=n(a1+an)/2,(a1是第一项的值,本题是1,an是最后项的值,本题是n),代入公式有s=n*(n+1)/2