设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f
问题描述:
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为( )
A. (-
,-2]9 4
B. [-1,0]
C. (-∞,-2]
D. (-
,+∞) 9 4
答
∵f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,
故函数y=h(x)=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点,
故有
,即
h(0)≥0 h(3)≥0 h(
)<05 2
,解得-
4−m≥0 −2−m≥0
−25 4
+4−m<025 2
<m≤-2,9 4
故选A.