紧急!)在△ABC中,B=60°,a=1,△ABC面积为(根号3)/2,则(a+b+c+)/(sin A+sinB+sinC)=

问题描述:

紧急!)在△ABC中,B=60°,a=1,△ABC面积为(根号3)/2,则(a+b+c+)/(sin A+sinB+sinC)=

由正弦定理:a/sinA=b/sinB=c/sinC=2R
∴a=2RsinAb=2RsinBc=2RsinC
则(a+b+c+)/(sin A+sinB+sinC)=2RsinA+2RsinB+2RsinC/(sin A+sinB+sinC)=2R
∵,△ABC面积为(根号3)/2
∴1/2acsinB=(根号3)/2解得c=2
∴由余弦定理得b=根号下(a²+c²-2acsinB)=根号3
2R=b/(sinB)=2