如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?

问题描述:

如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?

设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.

则有CA=DA=100m,
在Rt△ABC中,CB=

1002802
=60(m),
∴CD=2CB=120m,
∵18km/h=18000m/3600s=5m/s,
∴该校受影响的时间为:120÷5=24(s).
答:该校受影响拖拉机产生的噪声的影响时间为24秒.
答案解析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.
考试点:勾股定理的应用.
知识点:本题考查了勾股定理的应用,解答本题的关键是熟练掌握勾股定理的表达式,画出示意图,另外要求掌握时间=路程÷速度.