如图矩形ABCD中,E为BC上一点,DF⊥AE于F. (1)求证:△ABE∽△DFA; (2)若AB=6,AD=12,BE=8,求DF的长.

问题描述:

如图矩形ABCD中,E为BC上一点,DF⊥AE于F.

(1)求证:△ABE∽△DFA;
(2)若AB=6,AD=12,BE=8,求DF的长.

(1)证明:∵DF⊥AE,∴∠AFD=90°.               (1分)
∴∠B=∠AFD=90°.                    (2分)
又∵AD∥BC,
∴∠DAE=∠AEB.                           (3分)
∴△ABE∽△DFA.                                    (4分)
(2)∵AB=6,BE=8,∠B=90°,
∴AE=10.                                            (6分)
∵△ABE∽△DFA,∴

AB
DF
=
AE
AD
.                        (7分)
6
DF
=
10
12

∴DF=7.2.                                          (8分)