求和(x+1/x)^2+(x^2+1/x^2)^2+.+(x^n+1/x^n)^2的值

问题描述:

求和(x+1/x)^2+(x^2+1/x^2)^2+.+(x^n+1/x^n)^2的值

将平方逐项展开:(x^2+2+1/x^2)+(x^4+2+1/x^4)+……+(x^2n+2+1/x^2n)
提出常数项加和得到2n,拆成两项,2n-1与1.
然后原式可以转化为:(2n-1)+1/x^2n+1/x^(2n-2)+……+1/x^2+1+x^2+x^4+……+x^2n
后面为2n+1项的等比数列,公比为x^2,于是
利用等比数列公式可得:(2n-1)+x^(-2n)*(1-(x^2)^(2n+1))/(1-x^2) = 2n-1+(1-x^(4n+2))/(x^2n*(1-x^2))