求证:sin^2A+cos^2A+sinAcosA/sin^2A+cos^2A=tan^2A+1+tanA/tan^2A+1

问题描述:

求证:sin^2A+cos^2A+sinAcosA/sin^2A+cos^2A=tan^2A+1+tanA/tan^2A+1

(sin^2A+cos^2A+sinAcosA)/(sin^2A+cos^2A)(分子分母同时除以cos^2A)
=(sin^2A/cos^2A+cos^2A/cos^2A+sinAcosA/cos^2A)/(sin^2A/cos^2A+cos^2A/cos^2A)
=(sin^2A/cos^2A+1+sinA/cosA)/(sin^2A/cos^2A+1)
=(tan^2A+1+tanA)/(tan^2A+1)