行程问题的经典例题、有公式,
行程问题的经典例题、有公式,
基本公式
路程=速度×时间;路程÷时间=速度;路程÷速度=时间;
关键问题
确定行程过程中的位置;
相遇问题
速度和×相遇时间=相遇路程 相遇路程÷速度和=相遇时间 相遇路程÷相遇时间= 速度和;
相遇问题(直线)
甲的路程+乙的路程=总路程;
相遇问题(环形)
甲的路程 +乙的路程=环形周长;
追及问题
追及时间=路程差÷速度差 速度差=路程差÷追及时间 追及时间×速度差=路程差;
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长;
流水问题
顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米.两车在距中点32千米处相遇.东西两地相距多少千米?
思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米.有了路程差和速度差就可以求出相遇时间了为8小时.其他计算就容易了.
1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,.慢车每小时行多少千米?
思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米.因此慢车的速度为21千米/小时
1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米.中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙.求东西两村相距多少千米?
思路:先找到路程差,就可以求出相遇时间为5小时,则甲的速度就是15÷(5-4)=15(千米/小时).两村相距是15×4=60(千米)
1、甲乙两队学生从相距18千米的两地同时出发,相向而行.一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?
思路:要求两队相遇时,骑自行车的同学共行多少千米?就要求他的速度和时间.速度是已知的,时间就是两队的相遇时间.只要先求出相遇时间就可以了.
若要详细的,请见参考资料