积分号sin^(4)x,这个不定积分怎么积分啊?
问题描述:
积分号sin^(4)x,这个不定积分怎么积分啊?
答
∫(sinx)^4 dx
=∫[(sinx)^2]^2 dx
=∫[(1-cos2x)/2]^2 dx
=1/4·∫[1-2cos2x+(cos2x)^2] dx
=1/4·∫[1-2cos2x+(1+cos4x)/2] dx
=1/4·∫[3/2-2cos2x+(cos4x)/2] dx
=1/4·[∫3/2 dx-∫2cos2x dx+1/2·∫ (cos4x) dx]
=1/4·[3x/2-sin2x+1/8·sin4x]+C
=3x/8-1/4·sin2x+1/32·sin4x+C