试证曲线面√x+√y√z=√a(a>0)上任何点处的切面在各坐标轴上的截距之和等于a.
问题描述:
试证曲线面√x+√y√z=√a(a>0)上任何点处的切面在各坐标轴上的截距之和等于a.
答
是不是打错了,应该是√x+√y+√z=√a吧
由曲线切面公式,曲面在(x0,y0,z0)的切面为(x-x0)/(√x0)+(y-y0)/(√y0)+(z-z0)/(√z0)=0,将方程整理为截距式,得:x/(√x0*(√x0+√y0+√z0))+y/(√y0*(√x0+√y0+√z0))+z/(√z0*(√x0+√y0+√z0))=1,因为(x0,y0,z0)在曲面√x+√y+√z=√a上,所以有√x0+√y0+√z0=√a,所以,切面方程可化为:x/(√ax0)+y/(√ay0)+z/(√az0)=1,所以它的3个截距之和为:√ax0+√ay0+√az0=√a*(√x0+√y0+√z0)=√a*√a=a