tan(π/4+α)=2,求1/(2cosαsinα+cos^2α)

问题描述:

tan(π/4+α)=2,求1/(2cosαsinα+cos^2α)

∵ tan(π/4+α)
=[tan(π/4)+tanα]/[1-tan(π/4)tanα]
=[1+tanα]/[1-tanα]
=2
∴tanα=1/3
1/[2cosαsinα+cos²α)
=[sin²α+cos²α]/[2cosαsinα+cos²α]
=[tan²α+1]/[2tanα+1]
=[(1/3)²+1]/[2(1/3)+1]
=2/3