已知x+y=-2,xy=-1,求y+1/x+1+x+1/y+1的值.

问题描述:

已知x+y=-2,xy=-1,求

y+1
x+1
+
x+1
y+1
的值.

y+1
x+1
+
x+1
y+1

=
(y+1)2
(x+1)(y+1)
+
(x+1)2
(y+1)(x+1)

=
y2+2y+1
xy+x+y+1
+
x2+2x+1
xy+y+x+1

=
y2+x2+2(x+y)+2
xy+(x+y)+1

=
(x+y)2-2xy+2(x+y)+2
xy+(x+y)+1

把x+y=-2,xy=-1代入上式得:
原式=
(-2)2-2×(-1)+2×(-2)+2
-1-2+1
=-2.