已知二次函数y=ax^2图像经过点A(-2,4).(1)求出这个函数关系式,(2)写出抛物线上纵坐标为4的另一个点B的坐
问题描述:
已知二次函数y=ax^2图像经过点A(-2,4).(1)求出这个函数关系式,(2)写出抛物线上纵坐标为4的另一个点B的坐
(1)求出这个函数关系式(2)写出抛物线上纵坐标为4的另一个点B的坐标,并求出S△ABC,(3)在抛物线上是否存在一个点C,使得△ABC的面积等于△AOB面积的一半,如果存在求出点C的坐标,如果不存在,请说明理由.
答
(1)y = ax²,4 = a(-2)² = 4a,a = 1y = x²(2)y轴为对称轴,B(2,4)AB = 4S△AOB = (1/2)AB*AB上的高 = (1/2)*4*4 = 8(3)△ABC的面积 = 8/2 = 4△ABC中AB上的高 =△AOB中AB上的高的一半即可,即2C的纵坐标...