求函数y=log1/3{x+1/(x-1)+1}(x>1) 的最大值为
问题描述:
求函数y=log1/3{x+1/(x-1)+1}(x>1) 的最大值为
答
求函数y=log‹1/3›[x+1/(x-1)+1](x>1) 的最大值为 y=log‹1/3›[(x+1)+1/(x-1)]令y′=[1-1/(x-1)²]/[(x+1)+1/(x-1)]ln(1/3)=[x(x-2)/(x-1)²]/{-ln3[(x²/(x-1)]}=[x(x-2)]/[(-l...