选做题: 如图,AB是半圆O的直径,C是圆周上一点(异于A、B),过C作圆O的切线l,过A作直线l的垂线AD,垂足为D,AD交半圆于点E.求证:CB=CE.

问题描述:

选做题:
如图,AB是半圆O的直径,C是圆周上一点(异于A、B),过C作圆O的切线l,过A作直线l的垂线AD,垂足为D,AD交半圆于点E.求证:CB=CE.

证明:如图所示,连接BE

∵AB为半圆O的直径,
∴∠AEB=90°,即BE⊥AD
又∵直线l⊥AD
∴BE∥l
∴∠DCE=∠CBE
∵直线l为圆O的切线
∴∠CEB=∠DCE
∴∠CEB=∠CBE
∴CE=CB