求 cos[2arctan(3/4)]的值
问题描述:
求 cos[2arctan(3/4)]的值
答
cosα={1-[tan2(α/2)]^2}/{1+[tan2(α/2)]^2}
cos[2arctan(3/4)]=(1-tan2(arctan(3/4) )/(1+tan2(arctan(3/4) )
=[1-(3/4)^2]/[1+(3/4)^2]
=7/25