导函数的概念
问题描述:
导函数的概念
答
导函数的概念涉及: 的对于区间( , )上任意点处都可导,则 在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为 的导函数,记作 。
故导数的几何意义即曲线y = f(x)在点P0(x0,f(x0))处切线的斜率。
函数可导的条件
如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等
答
如果函数f(x)在区间I上每一点都可导,则对I中每个数x都有唯一一个数即f'(x)与之对应,由此确定的函数关系称作f(x)的导函数,记作f'(x)