已知lim[(3n^2+cn+1)/(an^2+bn)-4n]=5,求常数a、b、c的值
问题描述:
已知lim[(3n^2+cn+1)/(an^2+bn)-4n]=5,求常数a、b、c的值
答
1)若a=0,则原式化为lim((3n+c+1)/b-4n)=5
故3/b=4,c+1=5因此b=0.75,c=4;
2)若a不=0,原式极限不存在,因此,a=0.
综上所述,a=0,b=0.75,c=4
答
lim[(3n^2+cn+1)/(an^2+bn)-4n]=lim[(3n^2+cn+1-4an^3-4bn^2)/(an^2+bn)]则-4a=0 即a=0极限化成lim[(3n^2+cn+1-4bn^2)/(bn)]则3-4b=0 即b=3/4再化成lim[(4/3)*(cn+1)/n]=4c/3=5则c=15/4即a=0 b=3/4 c=15/4...