已知斜率为1的直线过椭圆(x2/4)+y2=1的右焦点交椭圆于A、B两点,求过椭圆|AB|长度右焦点(√3,0)∴直线为y=x-√3与x2/4+y2=1联立得x²/4+(x-√3)²=15x²-8√3x+8=0|AB|=√(x2-x1)²+(y2-y1)²=√2(x2-x1)²=√2[(x2+x1)²-4x1x2]=√2[192/25-32/5]=8/5最后那个弦长的过程我不明白

问题描述:

已知斜率为1的直线过椭圆(x2/4)+y2=1的右焦点交椭圆于A、B两点,求过椭圆|AB|长度
右焦点(√3,0)
∴直线为y=x-√3
与x2/4+y2=1联立得
x²/4+(x-√3)²=1
5x²-8√3x+8=0
|AB|=√(x2-x1)²+(y2-y1)²
=√2(x2-x1)²
=√2[(x2+x1)²-4x1x2]
=√2[192/25-32/5]
=8/5
最后那个弦长的过程我不明白