如图,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,若△ABC的周长是24,BE=a,则△BDE的周长是______.

问题描述:

如图,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,若△ABC的周长是24,BE=a,则△BDE的周长是______.

∵在△ABC中,AB=AC,∠A=60°,∴△ABC是等边三角形,∵△ABC的周长是24,∴AB=AC=BC=8,∵BE⊥AC于E,∴CE=12AC=4,∠EBC=12∠ABC=30°,∵CD=CE,∴∠D=∠CED,∵∠ACB是△CDE的一个外角,∴∠D+∠CED=∠ACB=60°...
答案解析:根据在△ABC中,AB=AC,∠A=60°,可得△ABC的形状,再根据△ABC的周长是24,可得AB=BC=AC=8,根据BE⊥AC于E,可得CE的长,∠EBC=30°,根据CD=CE,可得∠D=∠CED,根据∠ACB=60°,可得∠D,根据∠D与∠EBC,可得BE与DE的关系,可得答案.
考试点:等边三角形的判定与性质;等腰三角形的判定与性质.
知识点:本题考查了等腰三角形的判定与性质,有一个角是60°的等腰三角形是等边三角形,等腰三角形的性质:等边对等角,等腰三角形的判定:等角对等边..