有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔的支数的2倍,钢笔支数是铅笔支数的13,只有一只盒里放的水彩笔.这盒水彩笔共有______支.
问题描述:
有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔的支数的2倍,钢笔支数是铅笔支数的
,只有一只盒里放的水彩笔.这盒水彩笔共有______支. 1 3
答
若钢笔为1份,则圆珠笔为2份,铅笔为3份,这三种笔的总支数一定是6的倍数,即能同时被2和3整除.又因为8只盒子中有3只盒子装的笔的支数是偶数,5只盒子装的笔的支数是奇数,根据偶数+奇数=奇数,可知装有铅笔、圆珠笔、钢笔的7只盒子一定有3只盒子里装有偶数支笔,4支盒子里面装有奇数支笔,装有水彩笔的盒子一定装有奇数支笔.把8只盒子所装笔支数的数字分别加起来:
1+7+2+3+3+3+3+6+3+8+4+2+4+9+5+1=64;
因为64-(4+9)=51正好能被3整除,所以装有水彩笔的盒子共装有49支.
故答案为:49.
答案解析:依题意知,若钢笔为1份,则圆珠笔为2份,铅笔为3份,也就是说,这三种笔的总支数一定是6的倍数,即能同时被2和3整除.又因为8只盒子中有3只盒子装的笔的支数是偶数,5只盒子装的笔的支数是奇数,根据偶数+奇数=奇数,可知装有铅笔、圆珠笔、钢笔的7只盒子一定有3只盒子里装有偶数支笔,4支盒子里面装有奇数支笔,装有水彩笔的盒子一定装有奇数支笔.把8只盒子所装笔支数的数字分别加起来:1+7+2+3+3+3+3+6+3+8+4+2+4+9+5+1=64,因为64-(4+9)=51正好能被3整除,所以装有水彩笔的盒子共装有49支.
考试点:奇偶性问题.
知识点:完成本题首先要从钢笔、圆珠、铅笔之间的比入手找出倍数关系,进一步利用奇偶性解决问题即可.