过坐标原点O作圆x2+y2-6x-8y+20=0的两条切线OA、OB,A、B为切点,则线段AB的长为______.
问题描述:
过坐标原点O作圆x2+y2-6x-8y+20=0的两条切线OA、OB,A、B为切点,则线段AB的长为______.
答
知识点:本题考查直角三角形中的边角关系,二倍角的余弦公式,以及用余弦定理求边长.
:圆x2+y2-6x-8y+20=0 可化为(x-3)2+(y-4)2 =5,
圆心(3,4)到原点的距离为5.故cosα=
,
5
5
∴cos∠AO1B=2cos2α-1=-
,3 5
∴|AB|2=(
)2+(
5
)2+2×(
5
)2×
5
=16.3 5
∴|AB|=4.
故答案为:4.
答案解析:先求出圆心坐标和半径,直角三角形中使用边角关系求出cosα,二倍角公式求出cos∠AO1B,三角形AO1B中,用余弦定理求出|AB|.
考试点:圆的切线方程.
知识点:本题考查直角三角形中的边角关系,二倍角的余弦公式,以及用余弦定理求边长.