因式分解(x的平方+2x-18)(x的平方+2x)+45

问题描述:

因式分解(x的平方+2x-18)(x的平方+2x)+45

(x^2+2x-18)(x^2+2x)+45
=(x^2+2x)^2-18(x^2+2x)+45
=(x^2+2x)^2-18(x^2+2x)+81-36
=(x^2+2x-9)^2-36
=(x^2+2x-9-6)(x^2+2x-9+6)
=(x^2+2x-15)(x^2+2x-3)
-(x+5)(x-3)(x+3)(x-1)

(x^2+2x-18)(x^2+2x)+45
=(x^2+2x)^2-18(x^2+2x)+45
=(x^2+2x-3)(x^2+2x-15)
=(x-1)(x+3)(x-3)(x+5)

设x^2+2x=t
(x的平方+2x-18)(x的平方+2x)+45
=(t-18)t+45
=t^2-18t+45
=(t-15)(t-3)
=(x^2+2x-15)(x^2+2x-3)
=(x+5)(x-3)(x+3)(x-1)

令x²+2x=t
原式=(t-18)t+45
=t²-18t+45
=(t-15)(t-3)
=(x²+2x-15)(x²+2x-3)
=(x+5)(x-3)(x+3)(x-1)